Ruchliwość średnia proces


Mam przebieg średnioroczny, który wygląda tak: I widzę, że wariancja została obliczona w następujący sposób: Które nie wydaje mi się zrozumieć. Zasady wariancji mówią, że wariancja sumy dwóch zmiennych losowych. Cóż, to nie wygląda tak, ma w tym wariancie wariancję. Jeśli ktoś mógłby pomóc wyjaśnić jak ten krok jest możliwy, byłbym bardzo wdzięczny. EDIT: Po kilku dalszych badaniach myślę, że to ma związek z faktem, że dwie zmienne są niezależne.2.1 Moving Average Models (modele MA) Modele serii czasowej znane jako modele ARIMA mogą zawierać pojęcia autoregresywne i średnioroczne średnie ruchome. W pierwszym tygodniu dowiedzieliśmy się, że termin autoregresji w modelu szeregów czasowych dla zmiennej x t jest opóźnioną wartością x t. Na przykład terminem autoregresji 1 opóźnienia jest x t-1 (pomnożony przez współczynnik). Ta lekcja definiuje ruchome średnie terminy. Ruchoma średnia wersja w modelu szeregów czasowych jest błędem w przeszłości pomnożonym przez współczynnik. Niech (przewyższa N (0, sigma2w)), co oznacza, że ​​w t są identycznie, niezależnie rozdzielane, każdy z normalnym rozkładem mającym średnią 0 i tę samą wariancję. Średni model średniej ruchomej, oznaczony symbolem MA (1) to (xt mu wt atta1w) Średni model ruchu średniego rzędu, oznaczony symbolem MA (2) to (xt mu wt atta1w theta2w) , oznaczone literą MA (q) jest (xt mu wt theta2w kropka thetaqw) Uwaga. Wiele podręczników i programów definiuje model z negatywnymi znakami przed terminami. To nie zmienia ogólnych teoretycznych właściwości modelu, chociaż odwraca znaki algebraiczne oszacowanych wartości współczynników i (niezakłóconych) w formułach ACF i wariancji. Musisz sprawdzić oprogramowanie w celu sprawdzenia, czy użyto negatywnych lub pozytywnych oznaczeń w celu poprawnego zapisania szacowanego modelu. R używa pozytywnych oznaczeń w swoim modelu bazowym, tak jak tutaj. Właściwości teoretyczne serii czasowej z modelem MA (1) Należy pamiętać, że jedyną niższą wartością w teoretycznym ACF jest opóźnienie 1. Wszystkie inne autokorelacje wynoszą 0. Tak więc próbka ACF o znacznej autokorelacji tylko w punkcie 1 jest wskaźnikiem możliwego modelu MA (1). Dla zainteresowanych studentów, dowody dotyczące tych właściwości stanowią załącznik do niniejszego materiału informacyjnego. Przykład 1 Załóżmy, że model MA (1) wynosi x t 10 w t .7 w t-1. gdzie (nadwrażliwość N (0,1)). Współczynnik 1 0,7. Teoretyczny ACF podano w poniższym wykresie ACF. Przedstawiona fabuła jest teoretycznym ACF dla MA (1) z 1 0,7. W praktyce próbka zazwyczaj nie dostarcza tak wyraźnego wzorca. Używając R, symulujemy 100 wartości próbek przy użyciu modelu x t 10 w t .7 w t-1, gdzie w t iid N (0,1). W tej symulacji powstaje ciąg szeregowy danych przykładowych. Nie możemy wiele powiedzieć z tej fabuły. Poniżej znajduje się próbka ACF dla danych symulowanych. Widzimy skok w punkcie 1, a następnie ogólnie wartości nieistotne dla opóźnień 1. Pamiętaj, że próbka ACF nie jest zgodna z teoretycznym wzorem MA (1) leżącego u podstawy, co oznacza, że ​​wszystkie autokorelacje w przypadku opóźnień 1 będą 0 Inna próbka miałaby nieco inną próbkę ACF pokazaną poniżej, ale najprawdopodobniej miałyby takie same cechy. Właściwości terapeutyczne serii czasowej z modelem MA (2) Dla modelu MA (2), właściwości teoretyczne są następujące: Należy zauważyć, że jedynymi wartościami niezonarnymi w teoretycznym ACF są opóźnienia 1 i 2. Autokorelacje dla wyższych opóźnień to 0 Więc próba ACF o znacznych autokorelacjach w przypadku opóźnień 1 i 2, ale nieistotne autokorelacje dla wyższych opóźnień wskazują na możliwy model MA (2). iid N (0,1). Współczynniki wynoszą 1 0,5 i 2 0,3. Ponieważ jest to MA (2), teoretyczny ACF będzie miał wartości inne niż z opóźnieniami 1 i 2. Wartości dwóch niezerowych autokorelacji to wykres A teoretycznej ACF. Jak prawie zawsze jest tak, dane próbki nie zachowują się tak doskonale jak teoria. Symulujemy n 150 wartości próbek dla modelu x t 10 w t .5 w t-1 .3 w t-2. gdzie w t iid N (0,1). Sporządza się szeregowy szereg danych. Podobnie jak w przypadku szeregów czasowych dla danych próbki MA (1), niewiele można powiedzieć o tym. Poniżej znajduje się próbka ACF dla danych symulowanych. Wzór jest typowy dla sytuacji, gdy model MA (2) może być użyteczny. Istnieją dwa statystycznie istotne skoki przy opóźnieniach 1 i 2, po których następują nieistotne wartości dla innych opóźnień. Zauważ, że z powodu błędu pobierania próbek próbka ACF nie pasowała dokładnie do teoretycznego wzoru. ACF dla modeli MA (q) Modeli Ogólną cechą modeli MA (q) jest to, że dla wszystkich pierwszych opóźnień q i autokorelacji 0 dla wszystkich luków gtq istnieją autokorelacje nie zerowe. Niepowtarzalność połączenia pomiędzy wartościami 1 i (rho1) w modelu MA (1). W modelu MA (1) dla dowolnej wartości 1. odwrotny 1 1 daje taką samą wartość jak dla przykładu, użyj 0,5 dla 1. a następnie użyj 1 (0.5) 2 dla 1. Otrzymasz (rho1) 0,4 w obu przypadkach. Aby zaspokoić teoretyczne ograniczenie zwane "invertibility". ograniczamy modele MA (1) do wartości z wartością bezwzględną mniejszą niż 1. W podanym przykładzie, 1 0,5 będzie dopuszczalną wartością parametru, podczas gdy 1 10,5 2 nie będzie. Odwrotność modeli MA Model macierzowy jest odwracalny, jeśli jest on algebraiczny, odpowiadający modelowi zbiegającemu się z nieskończonym modelem AR. Zbiegając się, rozumiemy, że współczynniki AR spadają do 0, gdy wracamy w czasie. Inwersja to ograniczenie zaprogramowane w oprogramowanie serii czasowej służące do oszacowania współczynników modeli z hasłami. To nie coś, co sprawdzamy w analizie danych. Dodatkowe informacje o ograniczeniu inwersji dla modeli MA (1) podano w dodatku. Uwagi dotyczące teorii zaawansowanej. W modelu MA (q) z określonym ACF jest tylko jeden model odwracalny. Warunkiem koniecznym do odwrócenia jest fakt, że współczynniki mają takie wartości, że równanie 1- 1 y-. - q y q 0 ma rozwiązania dla y, które leżą poza okręgiem jednostkowym. R dla przykładów W przykładzie 1 wykreślono teoretyczny ACF modelu x t 10 w t. 7w t-1. a następnie symulowane n 150 wartości z tego modelu i wykreślono szereg próbkowania i próbkę ACF dla danych symulowanych. Polecenia R służące do sporządzenia teoretycznej ACF to: acfma1ARMAacf (mac (0.7), lag. max10) 10 opóźnień ACF dla MA (1) z theta1 0,7 lags0: 10 tworzy zmienną o nazwie opóźnienia w zakresie od 0 do 10 (h0) dodaje osi poziomej do wykresu Pierwsze polecenie określa ACF i zapisuje je w obiekcie (np. o nazwie acfma1 (nasz wybór nazwy). Polecenie wydruku (trzecie polecenie) powoduje błędy w porównaniu do wartości ACF dla opóźnień 1 do 10. Parametr ylab etykietuje na osi y, a główny parametr umieszcza tytuł na wykresie. Aby zobaczyć wartości liczbowe ACF, użyj komendy acfma1. Symulacje i wykresy zostały wykonane za pomocą następujących poleceń. xcarc. sim (n150, lista (mac (0.7))) Symuluje n 150 wartości z MA (1) xxc10 dodaje 10 do średniej 10. Domyślnie domyślne symulacje to 0. wykres (x, typeb, mainSimulated MA (1) data) acf (x, xlimc (1,10), mainACF dla symulowanych danych próbki) W przykładzie 2 wymyśliliśmy teoretyczny ACF modelu xt 10 wt5 w t-1 .3 w t-2. a następnie symulowane n 150 wartości z tego modelu i wykreślono szereg próbkowania i próbkę ACF dla danych symulowanych. Stosowane komendy R to acfma2ARMAacf (mac (0.5.0.3), lag. max10) acfma2 lags0: 10 (lags, acfma2, xlimc (1,10), ylabr, typh, główny ACF dla MA (2) z theta1 0,5, (x, x, x, x, x, x, x, x, x, x, x, x, y) mainACF dla symulowanych danych MA (2)) Dodatek: Dowód właściwości MA (1) Dla zainteresowanych studentów są dowody na teoretyczne właściwości modelu MA (1). Variance: (text (xt) text (mu wt theta1 w) tekst 0 (wt) tekst (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Kiedy h 1, poprzedni wyrażenie 1 w 2. W przypadku dowolnego h2, poprzednie wyrażenie 0 Powodem jest to, że z definicji niezależności wag. E (w k w j) 0 dla dowolnej kj. Ponadto, ponieważ w t oznaczają 0, E (wjwj) E (wj2) w2. W serii czasów Zastosuj ten wynik, aby uzyskać ACF podany powyżej. Inwersyjny model MA to taki, który można zapisać jako model AR nieskończonego zamówienia, który zbiega się tak, że współczynniki AR zbiegają się do 0, gdy poruszamy się nieskończenie wstecz w czasie. Dobrze wykazać inwersję modelu MA (1). Następnie zastępujemy relację (2) dla t-1 w równaniu (1) (3) (zt wt theta1 (z-taleta) wt theta1z-tal2w) W czasie t-2. równanie (2) staje się Następnie zastępujemy związek (4) dla t-2 w równaniu (3) (zt wt theta1 z - theta21w wt theta1z - eta21 (z-taleta) wt theta1z - eta12z theta31w) Gdybyśmy kontynuowali ( nieskończoność) dostaniemy model nieskończonej AR (zt wt theta1 z - theta21z theta31z-theta41z dots) Zauważ jednak, że jeśli 1 1, współczynniki mnożące opóźnienia z będą wzrastać (nieskończenie) w rozmiarze, gdy wracamy z powrotem czas. Aby temu zapobiec, potrzebujemy 1 lt1. Jest to warunek odwracalnego modelu MA (1). Model nieskoordynowanych zamówień MA W trzecim tygodniu widzimy, że model AR (1) można przekształcić w model MA nieskończonego rzędu: (xt - mu wt phi1w phi21w kropki phik1 w kropkach sumy fij1w) To sumowanie wcześniejszych białych szumów jest znane jako przyczynę reprezentacji AR (1). Innymi słowy, x t jest specjalnym rodzajem magistra z nieskończoną liczbą terminów z czasem. Nazywa się to nieskończoną kolejnością MA lub MA (). Kończy się rozkazem MA jest nieskończona kolejność AR, a dowolny porządek AR jest rzędem nieskończonym rzędu. Przypomnijmy sobie w tygodniu 1, zauważyliśmy, że wymóg stacjonarnego AR (1) polega na tym, że 1 lt1. Pozwala obliczyć Var (xt) używając reprezentacji przyczynowej. W ostatnim kroku używa się podstawowych faktów dotyczących serii geometrycznych, które wymagają (phi1lt1), w przeciwnym razie serie rozbieżności. NawigacjaTheEwma jest statystyką umożliwiającą monitorowanie procesu, który uśrednia dane w sposób, który zapewnia mniej i mniej wagi danych, gdy są one usuwane z czasem. Porównanie wykresu kontrolnego Shewhart i technik kontroli wykresu EWMA W technice sterowania wykresami Shewhart decyzja o stanie kontroli procesu w dowolnym momencie (t) zależy wyłącznie od ostatniego pomiaru z procesu i, oczywiście, stopień wiarygodności oszacowań limitów kontrolnych z danych historycznych. W przypadku techniki sterowania EWMA decyzja zależy od statystyk EWMA, która jest średnią waŜoną wykładniczo wszystkimi poprzednimi danymi, w tym ostatnim pomiarem. Przy wyborze współczynnika wagi (lambda) procedura kontroli EWMA może być wrażliwa na niewielki lub stopniowy dryft w procesie, podczas gdy procedura kontrolna Shewhart może się zareagować tylko wtedy, gdy ostatni punkt danych znajduje się poza granicą kontrolną. Definicja EWMA Obliczana statystyka to: mbox t lambda Yt (1-lambda) mbox ,,, mbox ,,, t 1,, 2,, ldots ,, n. gdzie (mbox 0) jest średnią danych historycznych (docelowych) (Yt) jest obserwacją w czasie (t) (n) jest liczba obserwacji, które mają być monitorowane, w tym (mbox 0) (0 interpretacja karty kontrolnej EWMA Czerwony kropki są surowymi danymi, które w przeszłości są statystyką EWMA, a wykres pokazuje nam, że proces jest kontrolowany, ponieważ wszystkie (mbox t) leżą między granicami kontroli, ale wydaje się, że tendencja ta wzrosła w ciągu ostatnich 5 lat okresy. Identyfikacja przeciętnego procesu przebiegu z nieskończoną odmianą Dedi Rosadi Wydział Matematyki, Uniwersytet Gadjah Mada, Sekip Utara, Yogyakarta, Indonezja Otrzymany 28 marca 2006 r. Przyjęty 21 lutego 2007 r. Dostępny online 12 marca 2007 r. W tradycyjnej procedurze modelowania BoxJenkins wykorzystaj przykładową funkcję autokorelacji jako narzędzie do identyfikacji prawdopodobnych modeli danych empirycznych. W niniejszym artykule rozważymy próbkę znormalizowanej codifference jako nowego narzędzia do wstępnego zidentyfikowania kolejności przechodzenia przez średni proces z h nieskończona wariacja. Z badań symulacyjnych wynika, że ​​proponowana metoda może się odbyć, a także Rosenfelds 1976. Identyfikacja szeregów czasowych o nieskończonej odmianie. Appl. Statystyk. 25, 147153. metoda. Średnia ruchoma Nieskończona odchylenie Identyfikacja zamówienia Przykładowa znormalizowana współstralność Copyright 2007 Elsevier B. V. Wszystkie prawa zastrzeżone. Cytowanie artykułów ()

Comments

Popular Posts